Что такое период полувыведения лекарственного препарата. Распределение, метаболизм и выведение препаратов

Что такое период полувыведения препарата. Распределение, метаболизм и выведение препаратов

Что такое период полувыведения лекарственного препарата. Распределение, метаболизм и выведение препаратов

text_fields

text_fields

arrow_upward

После всасывания или введения в кровь лекарства с кровотоком поступают в различные органы и ткани, несвободная (несвязанная с белком) фракция вещества диффундирует в клетки и межклеточное пространство.

В первую очередь — лекарство постунает в наиболее кровоснабжаемые органы — сердце, легкие и мозг, затем происходит его перераспределение в другие органы и системы. Одновременно идут процессы биотрансформации и экскреции лекарства и его метаболитов, что, в конечном счете, приводит к удалению препарата из орга­низма.

Основным местом биотрансформации лекарств является пе­чень.

Неизмененное лекарство и метаболиты удаляются из организ­ма преимущественно через почки или желудочно-кишечный тракт.

Для количественной характеристики этих сложных процессов используются следующие понятия:

Биодостутность npeпарата

text_fields

text_fields

arrow_upward

Часть неизмененного лекарства, достигающая системного кровотока после любого способа введения. При внутривенном введении ле­карств биодоступность равна 1,0 (100%), при пероралыюм приеме она может значительно уменьшаться (< 1,0) по причине недостаточного вса­сывания или метаболизма в печени (эффект “первого прохождения”).

Следует заметить, что на действие лекарства влияет не только всасываемость, но и скорость всасывания. Вещество с большей скорос­тью всасывания при равной биодоступности окажет действие рань­ше и будет дольше сохраняться выше минимальной эффективной кон­центрации, чем медленно всасывающееся.

У ряда лекарств биодоступность определяется степенью разруше­ния в печени при первичном прохождении (морфии, бета-адреноблокаторы, пролонгированные нитраты, верапамил, амитриптилин, изониазид и пр.).

Объем распределения (Vd)

text_fields

text_fields

arrow_upward

Определяется как отношение введенной дозы лекарства (D) к его концентрации в плазме (С): Vd = D/C (л).

При равномерном распределении вещества в организме объем рас­пределения будет примерно равен объему жидкости в организме. Если вещество полностью задерживается в сосудистом русле, Vd значи­тельно уменьшится и будет равен объему плазмы.

Если концентра­ция лекарства в тканях значительно выше, чем в плазме, Vd будет очень большим, т. к. для разведения вещества в тканях до уровня его концентрации в плазме требуется значительно больший объем, не­жели объем жидкости в организме.

Клиренс (CL)

text_fields

text_fields

arrow_upward

Равен отношению скорости элиминации (Vэ) лекарства из орга­низма к его концентрации в плазме (С): CL= Vэ)/C (л/ч). Он означает условный объем крови (плазмы), который полностью очищается от лекарства за единицу времени.

Основными органами элиминации являются печень и почки. Не­которые лекарства выводятся преимущественно печенью, другие почками. Общий клиренс препарата можно описать как сумму составляющих, включающих почечный, печеночный и связанный с ра­ботой других органов клиренс: CLобщ = СLпечени + СLпочек + CLдp.

В большинстве случаев элиминация лекарств является ненасыщаемой. Это значит, что скорость выведения вещества (Vэ) повышается с ростом его концентрации в плазме (С). Чем выше содержание пре­парата в плазме, тем активнее он выводится: Vэ = CL*C.

При выведении некоторых лекарств элиминация носит характер насыщаемой. Это означает, что при высоких дозах лекарства скорость элиминации перестает увеличиваться с ростом концентрации и ста­новится постоянной — достигается насыщение.

В этой ситуации до­зировка превышает возможности элиминации, равновесие между вве­дением и выведением лекарства нарушается, и оно накапливается в организме. Указанный тип элиминации чреват передозировкой и ха­рактерен для этанола, аспирина.

Период полувыведения (Т.)

text_fields

text_fields

arrow_upward

Время, необходимое в процессе выведения лекарства для сниже­ния его концентрации наполовину.

Т 1/2 — весьма полезная фармакодинамическая характеристика. До­пустим, что после прекращения внутривенного введения лекарства концентрация препарата снизится на 50% через один период полу­выведения.

После второго периода — она снизится еще на 25% (поло­вина от оставшихся 50%), итого — на 75% от исходной. Через три периода — на 87,5%> от исходной (75%> + половина от оставшихся 25 %), а через четыре — на 94%.

Следовательно, через 4 периода полувыве­дения исходная концентрация лекарства снизится до минимальной.

Изданной закономерности следует и другое утверждение: при по­стоянной скорости введения примерно через четыре Т 1/2 лекарство до­стигнет максимальной для данной дозы устойчивой концентрации, при которой скорость поступления препарата в кровь равна скорос­ти его выведения. Эта концентрация получила название равновеснойили стационарной.

Величина Т 1/2 служит начальным ориентиром для выбора интер­вала между введениями лекарства. Вещества с коротким Т 1/2 харак­теризуются быстрым и кратковременным действием (эффект АТФ после внутривенного введения продолжается несколько минут). Ве­щества с длительным Т 1/2 действуют медленно и долго, имеют склон­ность к кумуляции (сердечные гликозиды).

Вместе с тем Т 1/2 зависит не только от величины клиренса, но и от объема распределения (Т 1/2 =0,7*Vd/С1).

Так, при недостаточности кровообращения клиренс препаратов снижается из-за уменьшения почечного кровотока, а объем распределения — из-за ухудшения кровоснабжения тканей.

В этой ситуации создаются предпосылки для задержки лекарств при неизменном периоде полувыведения.

Процесс накопления лекарства в организме называется кумуляцией. На практике это означает, что если интервал между дозами ко­роче, чем 4 Т 1/2 может возникать кумуляция.

В качестве количествен­ного показателя кумуляции используетсяфактор кумуляции обратная величина от выведенной части лекарства — 1/Fэ.

Лекарство, ко­торое назначается через каждый период полувыведения, имеет фак­тор кумуляции равный 2 (1/0,5=2). через 2 периода — равный 1,33 (1/0.75= 1,33) и т.д.

Равновесная (стационарная) концентрация (Css)

text_fields

text_fields

arrow_upward

Концентрация лекарства, при которой количество препарата, поступающего в кровь, будет соответствовать количеству покидающего кровоток. При постоянной скорости введения она будет достигнута не раньше, чем через 4 периода полувыведения. Скорость достижения стационарной концентрации не зависит от дозы, по величина концен­трации определяется количеством вводимого препарата.

Устойчивая концентрация лекарства в крови, создающая основу для стабильного терапевтического эффекта, достигается только при постоянном внутривенном введении препарата.

Если введение (при­ем) лекарства осуществляется через определенный интервал времени, то Css колеблется вокруг своего среднего уровня. Границы этих коле­баний обозначают минимальная и максимальная равновесная концен­трации.

При более частом введении лекарства размах колебаний Css будет меньшим, нежели при более редком в эквивалентной дозе.

ЛВ наиболее часто используют в клинической практике в фиксированных дозах и с фиксированными интервалами, например, 100 мг 3 раза в день. При таком режиме назначения стационарная плазменная концентрация препарата подвержена колебаниям в течение суток, но в пределах терапевтических значений.

Размах колебаний плазменной концентрации препарата и скорость достижения стационарного состояния и будут зависеть от режима назначения лекарства. Режим дозирования ЛВ зависит от многих факторов: фармакокинетики (скорости элиминации), широты терапевтического действия, состояния больного и др. (рис. 7.

10).

При назначении ЛВ возможно назначение начальных, или нагрузочных, и поддерживающих доз. Нагрузочная и поддерживающая дозы могут быть одинаковыми или различными.

Это зависит от периода полувыведения препарата (T1/2), величины его терапевтического индекса, необходимой скорости получения ожидаемого эффекта.

Рис. 7.10.

Степень снижения почечного клиренса и увеличения времени полувыведения (T1/2) лекарственных веществ, экскретируемых почками в неизмененном виде (от 25 до 100%) в зависимости от степени выраженности почечной недостаточности amp; Нагрузочная доза связана с поддерживающей двумя параметрами – интервалом дозирования и (T1/2), что в конечном счете определяет индекс аккумуляции, или скорость достижения стационарного состояния. Наиболее часто используют интервал дозирования от 1 до 3 T1/2 для препаратов с T1/2 от 8 до 24 ч. Назначение таких препаратов можно начинать с поддерживающей дозы. Однако, если имеется необходимость ускорить наступление эффекта (например, при приеме сердечных гликозидов, антибиотиков), можно назначать нагрузочные дозы, эквивалентные двойной поддерживающей дозе. При этом плазменная концентрация препарата достигает терапевтического уровня уже после первой дозы, а последующие колебания ее Cmin и Cmax будут эквивалентны одной или двойной поддерживающей дозе. Например, тетрациклин, имеющий T1/2=8 ч, обычно назначают в дозах 250- 500 мг. Имеет смысл использовать нагрузочную дозу – 500 мг, а затем давать по 250 мг каждые 8 ч (т.е. через один Т1/2). Если начинать лечение с поддерживающей дозы 250 мг каждые 8 ч (т.е. 3 раза в день), достижение стационарной концентрации обеспечивается только через 30 ч (3-4 T1/2).

Таким образом, использование нагрузочной дозы (например, в эквиваленте двойной поддерживающей дозы) через один T1/2 оправдано для лекарств с T1/2 от 8 до 24 ч; при этом кратность составляет 3 или 1 раз в сутки. Если T1/2 менее 8 или более 24 ч, используют другие режимы (табл. 7.3).

Таблица 7.3. Режимы дозирования лекарственных средств для длительной терапии

Терапев тическая широтаПериод полувыведения (Т1/2)Соотношение между начальной и поддерживающей дозойСоотношение интервала дозирования и периода полувы- ведения

Источник: https://finland-club.ru/chto-takoe-period-poluvyvedeniya-preparata-raspredelenie/

Период выведения и время полураспада лекарств

Что такое период полувыведения лекарственного препарата. Распределение, метаболизм и выведение препаратов

После всасывания в кровь лекарственные средства (ЛС) неравномерно распределяются в органах и тканях организма. Существенно влияют на распространение веществ биобарьеры. К ним относятся стенка капилляров, цитоплазматический, гематоэнцефалический (ГЭБ) и плацентарный барьеры.

Биологические барьеры организма

Большинство препаратов легко преодолевает стенку капилляров. Одни средства проникают через поры путем фильтрации, другие проникают через капиллярную стенку путем диффузии. Некоторые гидрофильные соединения преодолевают капиллярную стенку с помощью транспортных систем.

Гематоэнцефалический барьер является существенным препятствием на пути проникновения лекарств в ЦНС. Капилляры мозга не имеют пор, в них отсутствует пиноцитоз.

Кроме того, внешняя поверхность эндотелия сосудов выслана астроглией, что создает дополнительный барьер на пути препаратов в ЦНС. В общем, гидрофильные соединения плохо проникают в мозг, а липофильные – хорошо.

Во время воспалительных процессов мозговых оболочек проницаемость ГЭБ увеличивается.

Выведение лекарств из организма

ЛС и их метаболиты выводятся из организма разнообразными путями: с мочой, калом, желчью, секретом потовых, сальных и бронхиальных желез, молоком матери, воздухом, выдыхаемым воздухом.

Базовую роль в экскреции лекарств играют почки. На выведение лекарств влияют фильтрация, канальцевая реабсорбция и секреция.

Фильтрации в клубочках нефрона испытывают вода, глюкоза, аминокислоты, белки с молекулярной массой до 60000 и некоторые другие соединения. Не фильтруются фракции препаратов, связанные с белками плазмы.

Скорость фильтрации зависит от интенсивности кровообращения в почках.

В случаях, когда почечный кровоток нарушен (шок, гломерулонефрит и др.), фильтрация существенно уменьшается.

Выделение лекарств с мочой

Активная секреция лекарственных средств происходит в проксимальных отделах нефрона. Секреция из крови через канальцевый эпителий в первичную мочу происходит с затратой энергии с участием специальных транспортных систем. Секретироваться могут как свободные, так и связанные с белками лекарственные средства. Реабсорбция лекарств происходит в дистальных отделах канальцев.

Поскольку пассивная реабсорбция происходит через липидные мембраны канальцевого эпителия, то становится очевидным, что лучше реабсорбируются недиссоциированные липофильные молекулы слабых кислот и щелочей, а также нейтральные соединения. Степень реабсорбции зависит от рН мочи.

Так, при кислых рН мочи слабые кислоты (барбитураты, бензодиазепины, сульфаниламиды) мало диссоциированные и легко реабсорбируются в кровь.

Напротив, в кислой среде молекулы слабых оснований (морфин, атропин, хинин и др.) находятся в высокодиссоциированном состоянии и плохо реабсорбируются в кровь, что способствует их выведению из организма. Регуляция рН мочи может быть использована при передозировках и отравлениях.

Так, искусственно наполняя мочу с помощью гидрокарбоната натрия, можно повысить скорость вывода лекарств – слабых кислот. При отравлениях алкалоидами, которые по природе слабые основания, мочу необходимо подкислить. Вывод лекарств и различных метаболитов значительно замедляется у пациентов с почечной недостаточностью.

Таким пациентам обычно назначают препараты, которые максимально метаболизируется в печени без образования активных метаболитов.

Выделение лекарств с калом

С калом выводятся из организма препараты, которые плохо всасываются в желудочно-кишечном тракте. Такие препараты используют преимущественно для воздействия на микрофлору кишечника или как слабительные средства.

Некоторые препараты (тетрациклин, пенициллины и др.) выделяются с желчью в тонкий кишечник, откуда они могут выводиться с калом или повторно всасываться, а затем снова выделяться в кишечник (так называемая циркуляция по энтеропеченочную кругу).

Другие способы выведения лекарств из организма

  • Через легкие выводятся из организма летучие соединения. Этот процесс происходит за счет пассивной диффузии и зависит от частоты и глубины дыхания.
  • Некоторые препараты выводятся с секретом желез (потовых, слюнных, желудочных и др.).

  • Некоторые алкалоиды и основы могут выделяться в полость желудка, откуда затем всасываются повторно. При отравлении такими средствами проводят многократное промывание желудка, что позволяет удалить из организма определенное количество препарата.
  • Вывод с секретом молочных желез (антикоагулянтов, транквилизаторов, цитостатиков и др.

    ) создает опасность неблагоприятного воздействия лекарственных средств на организм ребенка.

Период полувыведения

Процесс очистки организма от медицинского вещества путем его инактивации называется «элиминацией». Для оценки элиминации используют величину, которая называется «период полувыведения» (Т 1/2). Период элиминации – это время, за которое концентрация в крови уменьшается вдвое в сравнении с фазой равновесного распределения.

Необходимо отметить, что с увеличением дозы препарата выведение его из организма снижается и соответственно возрастает период полувыведения.

Кроме того, для количественной характеристики скорости вывода вещества из организма используют термин «клиренс» (очищение). Он отражает скорость очистки плазмы крови от вещества (например, 10 мл / мин). Различают общий, почечный и печеночный клиренс.

Большинство лекарственных средств несут в организм метаболические изменения. Этот процесс называется биотрансформацией.

Суть метаболических превращений заключается в том, чтобы чужеродное, опасное для организма средство превратилось в соединение, которое может быть легко выведено с мочой, желчью или потом.

Такие полярные метаболиты плохо растворяются в липидах и имеют низкую способность взаимодействовать с белками плазмы крови и тканей. Метаболиты, как правило, плохо проникают через биологические мембраны и не испытывают реабсорбции в почках и кишечнике.

Метаболизм лекарств в организме

Метаболизм лекарственных средств происходит преимущественно в микросомальном аппарате печени. Некоторые метаболические преобразования определенных лекарств могут происходить в кишечнике, легких, коже и плазме крови. Лишь некоторые препараты выводятся из организма в неизмененном виде.

Известны два базовых вида метаболизма ЛС:

  • метаболическую трансформацию (МТ);
  • конъюгации.

МТ – это химическое превращение вещества путем окисления, восстановления или гидролиза.

Окисление – один из самых распространенных путей инактивации лекарств. Окисление последних происходит в печени с участием микросомальных ферментов оксидаз (основной представитель цитохром Р-450). Суть окисления заключается в отщеплении ионов водорода от боковых цепей молекул препаратов. В реакции участвуют НАДФ и кислород.

Восстановление является более редким путем метаболизма лекарств. Реакции восстановления катализируют такие ферментные системы, как нитро- и азоредуктазы и др.

Конъюгации – это реакция присоединения к молекуле ЛС определенного гидрофильного эндогенного метаболита. Эти метаболиты предварительно активируются, образуя макроэргическую связь за счет АТФ.

Типичной реакцией конъюгации является присоединение к молекулам препаратов остатков уксусной или глюкуроновой кислот, глутатиона, сульфатов, глицина, метильного остатка и др.

Конъюгация может быть единственным путем преобразования лекарственных веществ в организме, или же она происходит после предварительной МТ. В процессе МТ и конъюгации препараты, как правило, теряют биологическую активность.

Процессы обезвреживания лекарств существенно замедляются у больных с патологией печени (цирроз, острые и хронические гепатиты и др.). Это приводит к росту продолжительности действия препаратов, развития явлений передозировки.

Некоторые препараты могут подавлять микросомальные ферменты печени (левомицетин, бутадион и др.) или немикросомальные ферменты (антихолинэстеразные средства, ингибиторы МАО и др.).

В таких случаях действие лекарств, метаболизм которых происходит при участии соответствующих ферментов, увеличивается. В то же время существуют соединения (фенобарбитал и др.

), которые повышают (индуцируют) скорость синтеза микросомальных ферментов.

Источник: http://medicine-simply.ru/just-medicine/26

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.